
Software Integration for Multivariate Exploratory Spatial
Data Analysis

Jürgen Symanzik1, Deborah F. Swayne2, Duncan Temple Lang3, Dianne Cook4

1Utah State University, Department of Mathematics & Statistics, Logan, UT 84322–3900
symanzik@sunfs.math.usu.edu

2AT&T Labs – Research, Statistics Research Department
dfs@research.att.com

3Bell Labs, Lucent Technologies, Statistics & Data Mining Research Department
duncan@research.bell-labs.com

4Iowa State University, Department of Statistics
dicook@iastate.edu

Abstract

This paper describes a decade’s worth of evolution of integrating software to support exploratory
spatial data analysis (ESDA) where there are multiple measured attributes. The multivariate graph-
ics tools we use are XGobi, and more recently, GGobi. The paper is divided into two parts. In the
first part, we review early experiments in software linking for ESDA, which used XGobi, different
Geographic Information Systems (GIS), and the statistical analysis packages S and XploRe. We
discuss applications, capabilities and deficits of these existing links. In the second part we describe
GGobi, the descendant of XGobi, which was designed with software integration as a fundamental
goal. GGobi lends itself to broader possibilities for linking with other software for richer ESDA.

Keywords

Dynamic Statistical Graphics, Interactive Graphics, Geographic Information System, Visual Data
Mining, Multivariate Data.

1 Introduction

Doing ESDA well involves three components: (1) GIS tools for map drawing and operations on
spatial information, (2) statistical data visualization software for generating plots of the attribute
information, especially to explore multivariate structure, and (3) a statistical analysis package to
compute spatial models and perform quick restructuring of data and attributes. Excellent software
has been developed for each of these components, but no single tool or package can do the jobs of
all three. Integrating software for ESDA makes sense.

The integration of GIS tools and statistical graphics tools depends on the ability to link an element
of a display of attribute information to its geographic coordinate, displayed on a map or as a terrain
surface. Useful statistical graphics include histograms, scatterplots, parallel coordinate plots, and
scatterplot matrices.

Combining statistical plots with geography has been discussed widely in the last 10 to 15 years.
Monmonier (1988) described a conceptual framework for geographical representations in statistical



graphics and introduces the term geographic brushing for the interactive “painting” of map views.
Unwin et al. (1990) developed a software system with both map drawing capabilities and statistical
graphics. Many software solutions (summarized in Symanzik et al. (2000a)) have been developed for
exploring multivariate spatially referenced data in recent years, but it remains true that no single
package can do everything well.

This paper describes an approach to software integration which relies on linking independent
tools in a variety of different ways. This approach allows software designers and developers to
concentrate on what they do best: geographers create the GIS’s, statistical data visualization experts
create the statistical graphics software, and experts in languages and algorithms create the analysis
environments. Indeed, all these tools already exist, and are constantly being refined and extended.
It makes little sense for each set of specialists to attempt to replicate the work of the others, as
replication will usually be inferior and always lag behind the original.

We have concentrated on linking software components that enable multivariate graphics to be
connected to map views and statistical analysis tools. Few software packages offer any connnection
to other systems, and even fewer provide a framework for connecting to arbitrary systems. When
communication tools are provided they have typically been added late in the development and are
somewhat inefficient and awkward.

In general, linking software is a difficult task. In section 2, we provide case studies of different
efforts to link GIS’s (ArcView and VirGIS), visualization (XGobi) and statistical analysis packages
(S and XploRe). As prototypes, these showed the potential of such linking for ESDA. We describe
what the links contributed, some of their shortcomings and the technical challenges they posed. In
summary, the links were difficult to develop and hard to maintain, and illustrate that these basic
components need to be designed from the outset to support interoperability between each other,
and other components which may not yet exist. In section 3, we focus on a collection of different
approaches to software integration that we have recently developed in GGobi, a modern descendant
of XGobi, that overcome some of the difficulties discovered in section 2. We hope that these will
provide the necessary technical infrastructure to allow the kinds of ESDA applications described in
2 to be implemented both easily and efficiently.

2 XGobi and its Links

2.1 Overview of XGobi

XGobi (Swayne et al., 1998) is a data visualization system with interactive and dynamic methods for
the manipulation of views of data. A view of an XGobi window can be seen in Figure 2.1. It offers 2D
displays of projections of points and lines in high–dimensional spaces, as well as parallel coordinate
displays (Inselberg, 1985; Wegman, 1990). Projection tools include dotplots and average shifted
histograms (Scott, 1985) of single variables, scatterplots of pairs of variables, 3D data rotations,
high dimensional rotations called “grand tours” (Asimov, 1985), and interactive projection pursuit
(Huber, 1985). Views of the data can be panned and zoomed. Points can be labeled and brushed
with glyphs and colors. Lines can be edited and colored. Several XGobi processes can be run
simultaneously and linked for labeling, brushing, and sharing of projections. Missing data are
accommodated and their patterns can be examined; multiple imputations can be given to XGobi for
rapid visual diagnostics.

XGobi is implemented in the X Window SystemTM, so it runs on any UNIX R©system, and runs
under Microsoft WindowsTMor the Macintosh R©operating system if an X emulator is used. XGobi
has been publicly available since the early 1990’s (Swayne et al., 1991), and has been widely used

X Window System is a trademark of MIT.
UNIX is a registered trademark of The Open Group.
Microsoft Windows is a trademark of Microsoft, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.



Figure 1: XGobi, showing a scatterplot. The data shown is taken from NOAA Tropical Ocean
Atmosphere project, in which measurements are made at buoys in the Pacific Ocean. XGobi is a
rich statistical data visualization package, but lacks cartographic display methods and modeling and
analysis tools. It is often used in conjunction with other software.

by data analysts in many fields. XGobi can be freely downloaded from
http://www.research.att.com/areas/stat/xgobi/.

In the remainder of this section, the following projects which linked XGobi to other software will
be described, along with the lessons we learned:

• S/XGobi: XGobi’s communication with the S statistics environment; one method uses files to
exchange data, and the other was our first attempt to use UNIX interprocess communication.

• ArcView/XGobi/XploRe: Links among ArcView, the XGobi visualization software and the
XploRe statistics environment using RPC.

• XGobi/VirGIS: Links between XGobi and the experimental virtual reality GIS called VirGIS,
again using RPC.

• XGobi/RA3DIO: Communication between XGobi and RA3DIO, a virtual reality framework
for the design and management of mobile phone networks; using DCE.

2.2 S/XGobi

The designers of XGobi had always intended that it be used in conjunction with other software,
especially analytical software such as the S language and statistics environment (Becker et al., 1988).
(S is currently available either commercially, as S-Plus, or as an Open Source implementation called
R (Gentleman and Ihaka, 1997).) They wanted to be able to reuse standard statistical functionality
and also allow users to provide their own methodology, choices for parameters, missing values, etc.



There exists an S (i.e. R or S-Plus) function, distributed with the XGobi software, that allows
an S user to launch an XGobi process given S objects as arguments. That function is beautifully
simple: the S objects are written out as ASCII files, and a system call executes XGobi with those
files as arguments. An XGobi process launched in this way has very limited ability to create S
objects directly: after brushing, for example, the vector of point colors can be saved as a file in the
S format. The S process has no ability to communicate further with XGobi.

The XGobi authors occasionally explored other approaches that would extend this unsatisfactory
relationship. As early as 1991, we used interprocess communication to maintain a live connection
between XGobi and S. One of the applications would draw a clustering tree in S, allow the user
to click on it to cut the tree and immediately set the point colors in XGobi to show the result. It
relied on a second program, also written in C, to gather input from the user and to manage the
interprocess communication. It was necessary to assemble each S language command, ship it to S,
read back the result and respond accordingly. To make this foolproof, it would have been necessary
for XGobi to be fully able to parse S commands and handle errors. Because this was such a daunting
task and one that would require continual updates to keep pace with changes to the S language,
work on this model was discontinued after the first prototype.

2.3 ArcView/XGobi/XploRe

Our initial foray in the integration of GIS’s and multivariate data visualization software was to
develop a unidirectional link between the GIS ARC/INFO and XGobi (Cook et al., 1994; Symanzik
et al., 1994). We then extended the work using ArcView 2.0, developing a bidirectional link with
XGobi (Cook et al., 1996, 1997; Macedo et al., 2000; Symanzik et al., 2000a,b).

Later, the link was extended to include the statistical computing environment XploRe (Härdle
et al., 1995), resulting in the ArcView/XGobi/XploRe environment (Symanzik et al., 1998a; Lewin-
Koh et al., 1999). Few modifications were required on the ArcView/XGobi side to support this
extension while XploRe had to undergo considerable changes since it did not yet support the required
communication technology.

Further information on the ArcView/XGobi/XploRe environment can be found at
http://www.math.usu.edu/~symanzik/axx/axx2000/.

2.3.1 Applications

The ArcView/XGobi link supports one–to–one connections between ArcView and XGobi such as
linking geographic location to (multivariate) attribute values and to empirical Spatial Cumulative
Distribution Function (SCDF) values. In addition, we explored one–to–two and two–to–one linking
to connect variogram–cloud plots (Cressie, 1984; Haslett et al., 1991), spatially lagged scatterplots
(Cressie, 1984), and multivariate variogram–cloud plots (Majure and Cressie, 1998) to geographic
coordinates. (These plots help the analyst identify spatial dependence patterns amongst the at-
tributes.)

The linking between ArcView and XGobi allows us to simultaneously display spatial locations and
concomitant geographic variables within the GIS while visualizing and exploring the corresponding
data space within XGobi. The usefulness of the link has been highlighted for several different
applications such as satellite imagery, forest health monitoring, precipitation data, and atmospheric
science data described in the previously cited main references on ArcView/XGobi. There also exist
videos that demonstrate the use of the ArcView/XGobi link (Majure et al., 1995, 1996; Symanzik
et al., 1995).

2.3.2 Technical Background

The ArcView/XGobi/Xplore environment uses Remote Procedure Calls (RPCs), the only Inter–
Process Communication (IPC) method supported by ArcView’s Avenue programming language when



this link was first developed. The use of RPCs is a programming technique in which a process on
the local system (client) invokes a procedure on a remote system (server).

ArcView was modified for this application using its built–in Avenue programming language. All
of the default ArcView functionality is available, with the addition of several operations that are
necessary to handle the link. Specifically, ArcView was modified to do the following: initiate an
RPC server and client, initiate and pass data to the XGobi process, brush locations in the map view
and instruct XGobi to brush the corresponding points, and process requests from XGobi to brush
locations. Detailed technical information on the implementation of the communication mechanism
between ArcView, XGobi, and XploRe can be found in Symanzik et al. (2000a).

2.3.3 Achievements and Deficits

The ArcView/XGobi/XploRe environment has been widely used for our own research, in the class-
room setting, and by our graduate students. Based on e–mail received over the last few years, many
people worldwide have downloaded the sources and have used the combined environment for their
own data. It runs on a variety of UNIX platforms, but it does not run under Microsoft Windows,
and thus excludes a large user community.

One of the current limitations of the ArcView/XGobi link is the number of points that can be
handled. The RPC method requires strings to be passed between ArcView and XGobi, and there is
a large overhead in encoding the data, communicating the strings and finally decoding them. With
large data, this inefficiency causes problems for linked brushing.

Currently, the ArcView/XGobi link does not allow linking between ArcView and multiple copies
of XGobi representing different data, for instance, an SCDF plot and a variogram–cloud plot. This
reflects a limitation of XGobi: the rules for linking between XGobi processes are primitive, and it’s
difficult to link a point in one display to a line or a set of points in another. To address this, either
XGobi’s linking rules could be made more flexible, or we could add a linking manager to ArcView,
which would mediate the linking process and communicate differently with each XGobi process.

The ArcView/XGobi link focuses on ESDA and uses few of the other features of the underlying
GIS. ArcView is mostly used to store the data and display additional geographic features that relate
to the statistical data of interest. Currently, the geographic brushing in ArcView exists only in what
Monmonier (1989) defines as its simplest form: “use a mouse to highlight specific areas on the map.”
However, another possible extension on the ArcView side could have facilitated more complex types
of geographic brushing, e.g., brushing statements of the form “brush all spatial locations that are at
most 10 km away from the next city boundary and have no major road within a distance of 1 km”.

This project is unlikely to continue. Updates to both XGobi and ArcView have made it difficult
to maintain this link across different version combinations. Indeed, ESRI has announced that it will
not support Avenue in future releases of ArcView. Given these circumstances, none of the desirable
features just listed have been added to the ArcView/XGobi/XploRe environment nor has any major
attempt been made to repair the latest versions of XGobi.

2.4 XGobi/XploRe/ViRGIS

The growing interest in GIS’s has led to increasingly complex applications that use ever larger and
more varied datasets. To be useful to a non–expert user, a GIS should allow the user to explore any
virtual world of interest.

The user might, for instance, look around the virtual Alps to decide where to take a skiing vacation
(Szabo et al., 1995). Visualization of the scene and all relevant data at the same time is crucial for
the ease of use of the system as a whole (Hearnshaw and Unwin, 1994). Such a GIS interface could
in fact be one of the prime examples of a post–WIMP user interface (WIMP stands for Windows,
Icons, Menus, and a Pointing device) (Coyne, 1995; van Dam, 1997).



We have been interested in linking XGobi and XploRe to software that supports such new features;
in particular, we chose the experimental Virtual Reality GIS ViRGIS (Pajarola, 1998; Pajarola et al.,
1998). ViRGIS maintains 3D terrain data in vector form (such as surface triangulations), raster data
(such as satellite images), and non–geometric data (such as population counts of cities). It allows a
user to move through the scene in real–time by means of a standard input device such as a mouse,
and to interact with the data in the GIS. Thus far, the ViRGIS interface is a desktop VR or video
user interface in the classification of Agnew and Kellerman (1996).

The combination of ViRGIS with XGobi/XploRe allowed us to implement and explore new func-
tionality that is conceptually not possible in the ArcView/XGobi/XploRe environment. Details on
the XGobi/XploRe/ViRGIS environment can be found in Symanzik et al. (1998b).

2.4.1 Applications

Using data accessible through ViRGIS, we can activate XGobi and XploRe (via XGobi) from within
ViRGIS and pass the data into these two packages. This allows us to conduct a graphical exploration
of the data in XGobi and a more detailed statistical analysis in XploRe.

The main feature of the XGobi/XploRe/ViRGIS environment is the linked brushing option that
combines quite heterogeneous windows and displays. We described in the previous section the use
of linked brushing between XGobi and XploRe; in addition, we can also select points from a textual
representation in ViRGIS. This textual representation and any linked XGobi window and XploRe
display are also linked to the ViRGIS Inventor view of the 3D terrain. Thus, brushing in one window
results in all linked windows being updated. As an example, we looked at a data set from 3019 Swiss
cities that contained demographics such as the language spoken in that city, ZIP, and population.

2.4.2 Technical Background

The inter–process communication used in this environment is based on the same RPC mechanism as
the ArcView/XGobi/XploRe environment. For the implementation of the RPC mechanism on the
ViRGIS side, we closely followed an early version of Symanzik et al. (2000a). No major modifications
were required on the XGobi and XploRe side.

2.4.3 Achievements and Deficiencies

The XGobi/XploRe/ViRGIS environment was purely experimental. Several interesting problems
came up that should be addressed in advance when linking future heterogeneous (2D and 3D)
applications. One question was how to translate brushing symbols when linking 2D and 3D displays.
Naturally, a circle in 2D relates to a sphere in 3D. But which 3D–object relates to a “+” and “×”?
We didn’t find an appealing solution. Similarly, the colors of the different tools should correspond:
Each package should also use the same set of colors (including the background and annotation colors)
so that the results of color brushing can be easily interpreted.

Since ViRGIS was only available for SGI workstations, the potential number of users of the
XGobi/XploRe/ViRGIS environment was very limited. Since further development on the ViRGIS
side was halted in favor of RA3DIO, no further development was made on the XGobi/XploRe/ViRGIS
environment.

2.5 XGobi/RA3DIO

RA3DIO is a virtual reality framework for the design and management of mobile phone networks
and the optimization of antenna positions. RA3DIO is based on the research prototype WorldView
(Beck et al., 1998). It was implemented to visualize and explore virtual terrains and terrain related
themes, especially electro-magnetic wave propagation of transmitters in rural and suburban areas.
Microsoft Windows was chosen as the platform for RA3DIO because of its wide distribution and



its many standard components. Therefore, it runs both on fast graphic workstations and on small
Notebook computers. In the remainder of this section, we describe a bidirectional link we developed
between RA3DIO and XGobi (Schneider et al., 2000).

2.5.1 Applications

RA3DIO can provide a large amount of data for visual exploration in XGobi, e.g., terrain data
(polyhedral triangulated data) on its own or spatial data objects handled in RA3DIO, such as cities
with their parameters (city name, spoken language, number of inhabitants, city area, etc.) or an
antenna data set (position, direction, height above ground, power, antenna type, carrier frequency,
etc.). In one example, the linked environment was used to analyze radiation emissions.

2.5.2 Technical Background

Since RA3DIO runs under Microsoft Windows and XGobi runs under the X Window System, the
particular RPC communication described in the previous sections could not be used for this link.
However, there exist several other competing middleware standards. We used the Distributed Com-
puting Environment (DCE) from OSF (Open Software Foundation, now The Open Group).

XGobi had to undergo many changes. The biggest problem for XGobi was the synchronization
with the DCE–RPCs. XGobi is a single–threaded application, so only one thread can access internal
data structures at a time. In DCE, RPCs can occur at any time. We had to provide synchronization
between each RPC thread and the main XGobi thread.

2.5.3 Achievements and Deficits

The link between RA3DIO and XGobi demonstrated that we could link applications across hetero-
geneous hardware platforms.

One of the deficiencies of this link is the speed. For a variety of reasons, the “send data” protocol
of the link was originally not designed for dynamic data updates. As a result, it is necessary to copy
the entire data matrix from RA3DIO to XGobi even if only one entry has been changed. This results
in a superfluous and excessive network load. Additionally, it introduces considerable overhead not
just on transmitting the data but also in processing it on the XGobi side of the link. The result is a
latency in responding to the user’s actions. An interim solution to handle this problem could have
been a data mirror residing on the same machine as the XGobi client. A more general solution is to
design the communication so that it also supports sending only the changes in the data.

3 GGobi

3.1 Overview of GGobi

GGobi (Swayne et al., 2003) is a direct descendant of XGobi, but it has been thoroughly redesigned.
For this paper, the most significant change is GGobi’s relationship to other software. These new
features will be described in the next section. Readers may also be interested in the following brief
description of the changes in GGobi’s appearance, portability, and data format, when compared to
XGobi. GGobi can be freely downloaded from http://www.ggobi.org/.

• GGobi’s appearance: GGobi looks quite unlike XGobi at first glance, because GGobi uses a
newer graphical toolkit called GTK+ (http://www.gtk.org), with a more contemporary look
and feel and a larger set of user interface components. The second change an XGobi user
will spot is the separation of the plot window from the control panel: With XGobi, there is
in general a single plot per process; to look at multiple views of the same data, we have to
launch multiple XGobi processes. In contrast, a single GGobi session can support multiple



Figure 2: GGobi, a descendant of XGobi, showing the same scatterplot as in Figure 2.1, and adding
a linked scatterplot matrix. GGobi has many differences from XGobi, both visible (multiple displays
are possible, and the toolkit has a more modern look) and invisible (it has been designed to facilitate
software integration).

plots of various types: scatterplots, parallel coordinate plots, scatterplot matrices, and time
series plots have been implemented thus far.

Other changes in GGobi’s appearance and repertoire of tools include an interactive color
lookup table manager, the ability to add variables on the fly, and a new interface for view
scaling (panning and zooming).

• Portability: A major advantage of using the new toolkit (GTK+) is portability. It originates in
the Linux R©community, but it has been ported to Microsoft WindowsTMand Macintosh R©OS
X. To run the older XGobi on a machine running Windows, it is first necessary to install an
X Window System server, but GGobi runs directly under Windows.

• GGobi’s data format: GGobi’s data format has been extended significantly from that of XGobi.
To describe a set of data for XGobi, we have to create a set of files with a common base name,

Linux is a registered trademark of Linus Torvalds.
Microsoft Windows is a trademark of Microsoft, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.



with the data in one file, and other files for the colors, labels, and so on. GGobi continues
to support this scheme in a limited way, but its new format uses a single file in XMLTM,
the Extensible Markup Language, which is emerging as a standard language for specifying
structured document formats and data exchange.

The use of a single file aids consistency of the different elements of the input, making it easier
to validate and maintain. An XML document looks similar to an HTML document, but it
allows us to introduce new markup elements. The use of XML in GGobi allows complex
characteristics and relationships in data to be specified. For example, multiple datasets can
be entered in a single XML file, and specifications can be included for linking them. Using the
XML software, GGobi can read compressed files and can read files over the network.

3.2 Technical Background

While GGobi is a stand–alone application, it has been designed and constructed as a programming
library and provides direct manipulation, dynamic visualization functionality that can be embedded
within other applications. It has a large, but still evolving, Application Programming Interface (API)
which developers can use to integrate the GGobi functionality with other code. In this section we
discuss GGobi’s interoperability philosophy and specifically the different ways by which one can
integrate GGobi with other software. At the highest level, there are three different approaches to
connecting GGobi with other software.

Embedding GGobi within other Applications: In this approach, we treat GGobi as a pro-
gramming library and allow its data structures to be compiled into other customized applica-
tions. When GGobi is embedded in this way, it can be controlled using programming interfaces
from other languages such as Java, Perl, Python and S. When the language is a scripting lan-
guage, the programming interface includes the use of the language’s interactive programming
facilities. These interfaces are called language bindings.

Extending GGobi: The use of modular plugins allows one to dynamically load code into a running
GGobi. Using this approach, programmers can add functionality to GGobi without having to
dig deeply into the code, and they can share their extensions easily with others.

Distributed/Remote Access: The client/server architecture allows one to create GGobi as a
server process offering a variety of methods to control, query and modify the session. Other
applications can invoke these methods, even across different machines. This approach has
roughly the same flavor as the linking methods described in Section 2, but CORBA and
DCOM are newer, higher-level and more powerful tools than RPC and DCE.

The first two approaches allow the two (or more) pieces of software to be running in the same process,
with direct access to shared memory. This makes the communication very fast and flexible. The
distributed approach involves inter-process communication and allows heterogeneous hardware and
configurations to be used. Different situations will use different approaches, and a single approach
is unlikely to work well for all contexts.

3.2.1 Language Bindings

While the API allows GGobi to be integrated with arbitrary applications that can access com-
piled/object code, we have focused on embedding GGobi within a particular class of applications,
specifically interpreted languages. We have developed a complete set of language bindings to GGobi
for S (both S–Plus and R), and also the basic functionality and framework for both Perl and Python.
These interactive, command–line interfaces to GGobi’s functionality allow us to drive and direct the
GGobi session in a very different style than an entirely GUI-based (Graphical User Interface) ap-
proach.



In addition to providing two simultaneous interfaces (GUI and command–line), this architecture
allows the functionality of both the statistical and the visualization environments to be used rela-
tively seamlessly. We can start by reading and processing the data using a powerful and general
programming language, creating the appropriate subsets of the observations, transformations of the
variables and statistical summaries of the dataset. We can explore the data both by using the S
command line (to operate on the data and generate static displays) and by direct manipulation of
GGobi’s displays (brushing and labelling points, changing the projection, and so on). We can query
the state of the GUI from within S to synchronize the two views (GGobi and S) of the dataset. We
might, for example, use the GUI to paint interesting subsets of the data in different colors, fetch
the color vector in S, and then perform operations such as smoothing or prediction on the subset
in the programming language. In the near future, we plan to connect the R and GGobi graphics
systems so that we can display plots from both systems on the same canvas, and use R to augment
and annotate GGobi’s displays.

Thus, the approach of language bindings has many advantages. First, it means that we, as
developers, do not have to re–implement (often half–heartedly) all the basic functionality provided
in other systems. Second, leaving functionality out of the GUI if it is better suited to a programmatic
interface typically simplifies the GUI and provides a more user–friendly and consistent environment
for the user. By providing bindings to well–known and commonly used languages such as S, Perl and
Python, we avoid inventing yet another language that is used only in a single application, GGobi.
In the near future, we hope to make some internal changes to the GGobi code that will facilitate
automating the creation of language bindings, making this style of interoperability richer for the
user and simpler for the developer.

3.2.2 GGobi & GTK+ Events

In the preceding section, we said that an S user could read elements of the state of GGobi’s GUI
into S using simple S functions. The language bindings allow us to go a step further, enabling S
to automatically respond to certain user actions by associating an S function with events from the
GGobi GUI. For example, as the user identifies a point with the mouse, or moves the brushing region
to include or exclude a point an event is generated. When these events take place in the GUI, the
associated S function is invoked and this can update other plots, display summaries on the console,
bring up new GUIs, etc. In addition to the brushing and point identification events above, users can
trap more structural GGobi events such as the loading of a new dataset or the creation of a new
display.

It is relatively easy to dynamically register an event handler that provides additional functionality
and later unregister that event handler in the session. Using this facility, we can customize and
extend the GGobi GUI using a high–level language such as S, rather than changing core C code.
This modularity or overlaying of functionality makes it simpler for the programmer and also guards
against corrupting GGobi. One application of this functionality is to implement different linking
schemes that go far beyond linking a point in one display to a point or a line segment in another.

This event processing in R is accomplished using the RGtk package, an R programming interface
to the GTK+ libraries. It provides a simple and uniform way to associate S functions with GTK+
and GGobi events and makes the customization of the GGobi GUI via the S–language possible.
Additionally, it also allows us to adapt and extend GGobi by building simpler or more customized
interfaces. We can programmatically embed GGobi plots and displays as components within other
GUIs.

3.2.3 Gnumeric Spreadsheet Plugin

In addition to the language bindings for S, Perl, and Python, we have also embedded GGobi into
Gnumeric, the Gnome spreadsheet, using Gnumeric’s plugin mechanism. This provides access to
GGobi’s functionality directly from within the spreadsheet/workbook. To create a GGobi instance,



the user of the spreadsheet can specify a range of cells, either manually or interactively. This initiates
the usual GGobi control panel and a plot of the specified data in the Gnumeric spreadsheet. The
user can then use GGobi as usual. This is a convenient interface that allows us to process, transform
and manage data within the spreadsheet before sending it to GGobi, and it can be more familiar
and less intimidating than the command–line or programmatic interfaces described in section 3.2.1.

In addition to being able to send data from Gnumeric to GGobi, the GGobi plugin for Gnumeric
can also be used in the opposite direction. We can create a dynamic GGobi instance for a given
sheet. In this context, events in GGobi can cause updates in the spreadsheet. For example, when
GGobi is in “identify mode” (interactively labeling the point nearest to the mouse cursor), we scroll
the spreadsheet so that the row corresponding to that nearby point is visible in the center of the
sheet. This allows us to see the values of all the variables for that record.

The GGobi plugin can also report events that occur during brushing, in particular when the
“brush” moves so as to include or exclude a point in the brushing region. The dynamic GGobi
interface provides a Gnumeric function for a cell in the spreadsheet that checks whether the cor-
responding point is inside the brushing region and returns a 1 or 0 accordingly. As the brush is
moved and resized, the cells in the worksheet are updated. This simple information can be used
in dynamic computations within the sheet to compute separate statistics for the records inside and
outside the brushing region. For example, we can compute the mean and variance of the brushed
subset for different columns by simply creating parallel columns formed by multiplying the values
in the original cells by the indicator of whether the record is in the brushing region. As we move
the brush around, the cells in the spreadsheet are updated and the new means and variances are
displayed. In this way, we can readily create dynamically updated numeric displays and format them
in easy–to–read ways that complement the dynamic GGobi linking.

3.2.4 Extending GGobi with Plugins

In the previous subsections, we discussed how we can extend GGobi by embedding it in other
applications and environments. In many cases, however, it is more convenient to add functionality
to GGobi. For example, we might want to add new plot types such as boxplots, conditional plots, or
graphs and trees. Alternatively, we might want to provide facilities for reading data from different
sources such as a database, or a binary or proprietary file format. We might also want to provide
additional tools such as a data editor, alternative printing facilities, data summary display, etc. In
principle, since the source for GGobi is publicly available, one can modify the core code to add such
functionality. However, we have provided a cleaner and more modular way to augment GGobi using
dynamically loadable “plugins”.

There are currently two basic types of plugins. Input plugins are used to read data from different
sources such as databases, binary file formats, etc; a current example reads data from Excel files.
Regular plugins are intended to provide additional user–level functionality to GGobi, to be accessed
using controls that are added to the GGobi GUI; current examples include a data editor and a
graph layout plugin. The architecture allows us to create the plugin by writing a few C routines
that implement the plugin’s functionality. These different routines are invoked by GGobi at different
times in the session, i.e., when the plugin is loaded and unloaded, and when the plugin is instantiated
and destroyed for a particular GGobi instance. An input plugin is invoked when GGobi needs it to
read data in the format handled by the plugin; a regular plugin typically adds an item to the Tools
menu by which the user can activate it. Plugins have full access to the internals of GGobi.

While the basic language for creating plugins, C, provides complete access to GGobi, it is too low–
level for many people. Accordingly, we have created three meta– or language–plugins which allow us
to program GGobi plugins using R, Java, or Perl. The developer implements an interface in Java, or
extends a Perl class, or implements a collection of S functions, and within these provides the desired
functionality of the plugin. The plugins can use the GGobi API and any available bindings for that
particular language. They can add entries to menus and other GUI components, and provide actions



for these controls without having to notify GGobi directly. They behave just like the low–level C
plugins and have a very similar structure. Plugins for other programming languages and scientific
computing and data analysis systems (e.g., Visual Basic, Matlab/Octave and XLisp-Stat) can easily
be added to this framework.

Each time GGobi is started, it reads an initialization or “rc” file and this can include information
about the plugins for that user and system. The initialization file is written in XML and can
optionally include elements describing the different plugins of interest and their details, such as a
human–readable description for the user, the location of the Dynamically Loadable Library (DLL
or shared library) containing the code or the name of the Java/Perl class or R function, the names
of the routines corresponding to the different plugin hooks, etc.

The plugin mechanism allows developers to enhance GGobi without having to modify the code.
It minimizes the need to re–integrate changes into new GGobi releases. It also makes it reasonably
easy to develop new plugins by providing a well–defined sequence of steps. Typically, we can use
previously written code by merely adapting it to the necessary plugin interfaces. Again, we hope
that the ease with which plugins can be introduced provides a focused framework that encourages
people to experiment with new ideas and to add less common functionality that might not be worth
building from scratch. Also, we hope that it will provide an easy connection to other projects such
as ORCA (Sutherland et al., 2000) and other work being done in Java, Python, and Perl.

3.2.5 Automation & Inter–Process Communication

In some contexts, the approach of embedding GGobi within an application (or vice–versa) is not
desirable. Instead, allowing an application to communicate with a separate GGobi process, possibly
on a different machine, makes more sense. Both CORBA (the Common Object Request Broker Ar-
chitecture) and Microsoft’s DCOM are middleware which allow exactly this style of interoperability.
In this framework, we create a server object, such as a GGobi instance, in one process and advertise
a set of methods or operations that are supported by the server object. Client applications can then
access the server and invoke these methods to control, query, and modify the server. During the life
of the server, it can also act as a client and access functionality in other servers to do its job and can
even use functionality and data in the original client. This framework allows objects such as GGobi
plots to be embedded – and dynamically updated – in documents, spreadsheets, presentations, etc.

We have created a basic CORBA interface for GGobi using Orbit, GNOME’s CORBA imple-
mentation. Many of the GNOME applications (e.g., Gnumeric and AbiWord) use CORBA to share
functionality and exploit the concept of component based software and desktop. If there is interest
in this distributed approach, we will augment the interface with more of the functionality from the
GGobi API. Additionally, we plan to implement a DCOM interface for Windows.

3.3 Potential for ESDA

The multiple ways that open up the GGobi functionality to other packages provide exciting possi-
bilities for ESDA. It could be possible to embed GGobi into a variety of GIS, or embed a GIS in
GGobi. A connection from the S language allows the use of the spatial tools package to process spa-
tial information into objects such as variogram clouds to display in GGobi. As the user probes the
variogram cloud the associated pairs of spatial locations are highlighted in a GIS. GGobi’s database
connection gives it access to a rich collection of distributed and diverse data.

We also look forward to using GGobi as part of our research in virtual environments, which
we began in the mid-1990s. The VRGobi system uses a virtual environment as a platform for
the 3D dynamic and interactive display of statistical graphics. It re-implements a small set of
techniques from XGobi into this new domain (Cook et al., 1998). We were especially interested
in the potential of VRGobi for ESDA, since it seems natural to display spatial data in 3D. We
project a 3D terrain map along the floor of the virtual environment, and those displays seem quite



successful. We experimented with adding floating displays of 3D scatterplot clouds above the terrain
map, but we would also like have 2D statistical graphics available for data analysis. Displaying 2D
graphics in a 3D environment is not always successful, in part because of the lower resolution of the
displays. In our current research, we are experimenting with using the 3D environment for displaying
the information that is naturally three-dimensional (like terrain maps or tornados), but using 2D
displays for plots of statistical data. GGobi is used on a handheld portable PC physically carried
into the 3D environment, and it displays statistical plots which are linked to the 3D physical model
or terrain. One program is used to drive both GGobi and the 3D simulation; GGobi is embedded
in that program and controlled using its API. An example of a spatial application is that we might
use GGobi to monitor the changes in atmospheric conditions, such as temperature, humidity, air
pressure, wind directions, as a simulated tornado moves across a simulated landscape.

4 Discussion

In this paper, we have described the evolution of methods that allow us to link other software
packages to the two statistical graphics packages XGobi and GGobi. The earlier work connected
XGobi to different GIS and statistical systems, first using data exchange via files, and later the more
sophisticated RPC mechanism that allowed clients to invoke methods as well as exchange data with
a server. From the user’s perspective, there were issues with consistency of the user interface across
the different applications. The high overhead of the data exchange method slowed the links between
systems, causing noticeable delays when dealing with large datasets. From the developer’s point
of view, the programming of the XGobi link required low-level access to the source code and was
difficult to maintain and integrate across different releases of the component software. Error handling
across systems was never adequately handled. Our most important observation from this past work
is that it’s exceedingly difficult to integrate software that wasn’t designed with that purpose in mind.

Armed with experiences from XGobi and other projects (including R and Omegahat), we designed
GGobi to support interoperability from its inception. The user’s need for consistency can be dealt
with by embedding GGobi functionality into other GTK+-based applications. Problems with speed are
significantly reduced by having the linked applications in the same process, accessing data structures
in shared memory. GGobi’s richer data description using XML allows multiple data matrices to be
managed, and more sophisticated linking rules to be defined. One can also extend the linking rules
using one of the high-level language bindings such as R, Python or Perl. From the developer’s
perspective, GGobi offers an array of integration and linking methods to choose from: through its
API, via GTK+ events, by adding plugins, or through inter–process communication. They can choose
the method that is most suitable for their project and the one that works best with the other software
they want GGobi to communicate with.

It is perhaps the extensibility facility provided by the language bindings that offers the greatest
potential for both users and developers. We have seen how S has allowed users in the data analysis
domain to extend the core computational system, experiment and refine new methodology and
generally perform more cutting–edge and innovative analyses. Similarly, we believe that providing
this extensible interface to GGobi will encourage greater experimentation and more exploratory
usage, both in the traditional and spatial data analysis domains. Having demonstrated the usefulness
of the ArcView/XGobi/XploRe environment over many years, it seems obvious that we can create
even more powerful environments for ESDA using GGobi on a variety of platforms.

References

Agnew, P. W., Kellerman, A. S., 1996. Distributed Multimedia — Technologies, Applications, and Oppor-
tunities in the Digital Information Industry: A Guide for Uers and Providers. ACM Press and Addison–
Wesley, Reading, MA.



Asimov, D., 1985. The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM Journal on Scientific
and Statistical Computing 6 (1), 128–143.

Beck, M., Eidenbenz, S., Stamm, C., Stucki, P., Widmayer, P., 1998. A Prototype System for Light Prop-
agation in Terrains. In: Wolter, F. E., Patrikalakis, N. M. (Eds.), Proceedings of Computer Graphics
International. IEEE Computer Society, pp. 103–106.

Becker, R., Chambers, J., Wilks, A., 1988. The New S Language — A Programming Environment for Data
Analysis and Graphics. Wadsworth and Brooks/Cole, Pacific Grove, CA.

Cook, D., Cressie, N., Majure, J., Symanzik, J., 1994. Some Dynamic Graphics for Spatial Data (with
Multiple Attributes) in a GIS. In: Dutter, R., Grossmann, W. (Eds.), COMPSTAT 1994: Proceedings in
Computational Statistics. Physica–Verlag, Heidelberg, pp. 105–119.

Cook, D., Cruz-Neira, C., Kohlmeyer, B. D., Lechner, U., Lewin, N., Nelson, L., Olsen, A., Pierson, S.,
Symanzik, J., 1998. Exploring Environmental Data in a Highly Immersive Virtual Reality Environment.
Environmental Monitoring and Assessment 51 (1/2), 441–450.

Cook, D., Majure, J. J., Symanzik, J., Cressie, N., 1996. Dynamic Graphics in a GIS: Exploring and
Analyzing Multivariate Spatial Data Using Linked Software. Computational Statistics: Special Issue on
Computeraided Analysis of Spatial Data 11 (4), 467–480.

Cook, D., Symanzik, J., Majure, J. J., Cressie, N., 1997. Dynamic Graphics in a GIS: More Examples Using
Linked Software. Computers and Geosciences: Special Issue on Exploratory Cartographic Visualization
23 (4), 371–385, paper, CD, and http://www.elsevier.nl/locate/cgvis.

Coyne, R., 1995. Designing Information Technology in the Postmodern Age. The MIT Press, Cambridge,
MA.

Cressie, N., 1984. Towards Resistant Geostatistics. In: Verly, G., David, M., Journel, A. G., Marechal, A.
(Eds.), Geostatistics for Natural Resources Characterization, Part 1. Reidel, Dordrecht, pp. 21–44.

Gentleman, R., Ihaka, R., 1997. The R Language. Computing Science and Statistics 28, 326–330.

Härdle, W., Klinke, S., Turlach, B. A., 1995. XploRe: An Interactive Statistical Computing Environment.
Springer, New York, NY.

Haslett, J., Bradley, R., Craig, P., Unwin, A., Wills, G., 1991. Dynamic Graphics for Exploring Spatial Data
with Application to Locating Global and Local Anomalies. The American Statistician 45 (3), 234–242.

Hearnshaw, H. M., Unwin, D. J. (Eds.), 1994. Visualization in Geographical Information Systems. John
Wiley & Sons, Chichester, UK.

Huber, P. J., 1985. Projection Pursuit (with Discussion). Annals of Statistics 13, 435–525.

Inselberg, A., 1985. The Plane with Parallel Coordinates. The Visual Computer 1, 69–91.

Lewin-Koh, N. J., Symanzik, J., Cook, D., 1999. Dynamic Linking of ArcView, XGobi and XploRe for
Multivariate Spatial Data: Linked Brushing for Points, Polygons, and Lines. In: Proceedings of the
20th Asian Conference on Remote Sensing, Hong Kong, China, November 22-25, 1999, Volume 1. Joint
Laboratory for Geo Information Science of The Chinese Academy of Sciences and The Chinese University
of Hong Kong (JLGIS), pp. 575–580.

Macedo, M., Cook, D., Brown, T. J., 2000. Visual Data Mining in Atmospheric Science Data. Data Mining
and Knowledge Discovery 4 (1), 69–80.

Majure, J. J., Cook, D., Cressie, N., Kaiser, M., Lahiri, S., Symanzik, J., 1995. Spatial CDF Estimation and
Visualization with Applications to Forest Health Monitoring. ASA Statistical Graphics Video Lending
Library (contact: dj@research.bell-labs.com).

Majure, J. J., Cook, D., Symanzik, J., Megretskaia, I., 1996. An Interactive Environment for the Graphical
Analysis of Spatial Data. ASA Statistical Graphics Video Lending Library (contact: dj@research.bell-
labs.com).

Majure, J. J., Cressie, N., 1998. Dynamic Graphics for Exploring Spatial Dependence in Multivariate Spatial
Data. Geographical Systems 4 (2), 131–158.

Monmonier, M., 1988. Geographical Representations in Statistical Graphics: A Conceptual Framework. In:
1988 Proceedings of the Section on Statistical Graphics. American Statistical Association, Alexandria,
VA, pp. 1–10.

Monmonier, M., 1989. Geographic Brushing: Enhancing Exploratory Analysis of the Scatterplot Matrix.
Geographical Analysis 21 (1), 81–84.

Pajarola, R., Ohler, T., Stucki, P., Szabo, K., Widmayer, P., 1998. The Alps at your Fingertips: Virtual
Reality and Geoinformation Systems. In: Proceedings 14th International Conference on Data Engineering,



ICDE ’98. IEEE, pp. 550–557.

Pajarola, R. B., 1998. Access to Large Scale Terrain and Image Databases in Geoinformation Systems. Ph.D.
thesis, Diss. ETH No. 12729 Department of Computer Science, ETH Zürich.

Schneider, M., Stamm, C., Symanzik, J., Widmayer, P., 2000. Virtual Reality and Dynamic Statistical
Graphics: A Bidirectional Link in a Heterogeneous, Distributed Computing Environment. In: Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), Las Vegas, Nevada, June 26–29, 2000, Volume IV. CSREA Press, pp. 2345–2351.

Scott, D. W., 1985. Average Shifted Histograms: Effective Non–Parametric Density Estimation in Several
Dimensions. Annals of Statistics 13, 1024–1040.

Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J., Cox, Z., Cook, D., 2000. Orca:
A Visualization Toolkit for High–Dimensional Data. Journal of Computational and Graphical Statistics
9 (3), 509–529.

Swayne, D. F., Cook, D., Buja, A., 1991. XGobi: Interactive Dynamic Graphics in the X Window System
with a Link to S. In: 1991 Proceedings of the Section on Statistical Graphics. American Statistical
Association, Alexandria, VA, pp. 1–8.

Swayne, D. F., Cook, D., Buja, A., 1998. XGobi: Interactive Dynamic Graphics in the X Window System.
Journal of Computational and Graphical Statistics 7 (1), 113–130.

Swayne, D. F., Lang, D. T., Buja, A., Cook, D., 2003. GGobi: Evolving from XGobi into an Extensible
Framework for Interactive Data Visualization. Computational Statistics & Data Analysis 43 (4), 423–444.

Symanzik, J., Cook, D., Lewin-Koh, N., Majure, J. J., Megretskaia, I., 2000a. Linking ArcView and XGobi:
Insight Behind the Front End. Journal of Computational and Graphical Statistics 9 (3), 470–490.

Symanzik, J., Griffiths, L., Gillies, R. R., 2000b. Visual Exploration of Satellite Images. In: 2000 Proceedings
of the Statistical Computing Section and Section on Statistical Graphics. American Statistical Association,
Alexandria, VA, pp. 10–19.

Symanzik, J., Kötter, T., Schmelzer, S., Klinke, S., Cook, D., Swayne, D., 1998a. Spatial Data Analysis in
the Dynamically Linked ArcView/XGobi/XploRe Environment. Computing Science and Statistics 29 (1),
561–569.

Symanzik, J., Majure, J., Cook, D., Cressie, N., 1994. Dynamic Graphics in a GIS: A Link between
ARC/INFO and XGobi. Computing Science and Statistics 26, 431–435.

Symanzik, J., Majure, J. J., Cook, D., 1995. Dynamic Graphics in a GIS: Analyzing and Exploring Multivari-
ate Spatial Data. ASA Statistical Graphics Video Lending Library (contact: (contact: dj@research.bell-
labs.com).

Symanzik, J., Pajarola, R., Widmayer, P., 1998b. XGobi and XploRe Meet ViRGIS. In: 1998 Proceedings
of the Section on Statistical Graphics. American Statistical Association, Alexandria, VA, pp. 50–55.

Szabo, K., Stucki, P., Aschwanden, P., Ohler, T., Pajarola, R., Widmayer, P., 1995. A Virtual Reality based
System Environment for Intuitive Walk–Throughs and Exploration of Large–Scale Tourist Information.
In: Proceedings Enter95: Information and Communication Technologies in Tourism. Springer, Vienna,
pp. 10–15.

Unwin, A., Wills, G., Haslett, J., 1990. REGARD — Graphical Analysis of Regional Data. In: 1990 Pro-
ceedings of the Section on Statistical Graphics. American Statistical Association, Alexandria, VA, pp.
36–41.

van Dam, A., February 1997. Post–WIMP User Interfaces. Communications of the ACM 40 (2), 63–67.

Wegman, E. J., 1990. Hyperdimensional Data Analysis Using Parallel Coordinates. Journal of the American
Statistical Association 85, 664–675.


